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Nonconventional Transmission Zeros in
Distributed Rectangular Structures

BRUNO BIANCO anp SANDRO RIDELLA

Abstract—A lossless distributed rectangular structure, composed
of a dielectric layer interposed between two perfectly conductive
metallic layers, is considered. This structure is endowed with two
ports, whose positions and widths are variable and is connected to
the environment through uniform transmission lines. A procedure is
exposed to obtain the impedance matrix at the terminals of the trans-
mission lines. The existence of transmission zeros and of filtering
properties is demonstrated.

INTRODUCTION

APERED transmission lines have been investi-
Tgated both in the lossless and in the RC case by

several authors with the use of classical non-
uniform line theory [1]-[4].

A more general class of distributed networks has been
investigated in recent papers [5]-[7]. These papers are
concerned with a three-layer structure in which each
layer has uniform thickness and is composed of linear,
passive, homogeneous, time-invariant material. Each
layer is physically characterized by its magnetic perme-
ability, dielectric constant and electric conductivity.
The three layers overlap exactly and are laterally
limited by a cylindrical surface of arbitrary shape,
perpendicular to the layers. This system interacts with
the outside world through N ports placed in the lateral
boundary of the wafer. We are interested in the terminal
behavior of the system at those N ports. Thus the
system studied in [5]-[7] is a generalization of strip
lines, nonuniform lines, and various other devices which
have been examined in the literature in a rather par-
ticular way.

ANALYSIS OF THE STRUCTURE

The analysis of the three-layer wafer described above

stems from electromagnetic theory [5]-[7]. The meth-
ods of analysis are based on basic techniques, e.g.,
normal mode methods of field theory which are well
known in microwave literature. These methods have
been used to investigate particular properties of the
three-layer structure. The electromagnetic field inside
the structure is represented by expansion in terms of
vector eigenfunctions of Maxwell's equations, with
properly chosen boundary conditions.
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Fig. 1. N-port (here N=3) composed of a dielectric
layer interposed between two metallic layers.

Such eigenfunctions are broadly divided in two
classes: 1) planar ones, only depending on the x and y
coordinates, which are parallel to the layers; and 2)
depth ones, only depending on the z coordinate (per-
pendicular to the layers).

It must be remarked that the propagation direction,
that is, the direction in which the power flows, lies in
the x—y plane; it seems inappropriate to use transverse
and longitudinal eigenfunctions instead of planar and
depth eigenfunctions, respectively.

The analysis of the terminal behavior of the structure
must start from the analysis of the depth properties.
In the above quoted papers one can find the general
development of this problem.

In this paper, however, we shall consider a three-
layer structure (Fig. 1) where the upper and lower layers
are perfectly conductive materials and the intermediate
one is a lossless dielectric. In technical applications
such a structure will be fairly realized by a wafer com-
posed of a dielectric lossless layer interposed between
two metallic sheets, obtained, for example, by deposi-
tion.

Because of the assumption that the external layers are
perfectly conductive, the electromagnetic field in the
structure is confined in the intermediate layer. We shall
assume that the wafer thickness is so small in com-
parison with its transverse dimension as to make the
effect of field fringing along the boundary practically
negligible. Moreover, we shall assume that only the
fundamental depth mode [6], [7] is excited; it is char-
acterized by having the electric field parallel to the 2
axis, and the magnetic field parallel to the x—y plane.
These assumptions are quite reasonable for many well-
known physical structures, such as lossless uniform and
nonuniform lines, microstrip filters, cavities, etc. The
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terminal behavior of the layered structure can be ob-
tained by solving the following differential equation

[5)-[7]:

V2E(®, y) — v*Es(x, 5) = 0 1
where
v? Laplace operator in the x—y plane;
E.(x, v) electric fiéld (parallel to the z axis);
v propagation constant, given by
v = sten (2)

where s =0 +jw is the complex frequency and e(u) is the
dielectric (magnetic) constant of the intermediate
layer.

The boundary conditions for (1) are of the following
mixed type. 1) On the part of the boundary not belong-
ing to the ports,

IE, )
=0

on

where # is the inner normal to the boundary. (This con-
dition, which assumes that the boundary of the walfer,
in the portions not occupied by the ports, acts as a
magnetic wall, derives from that assumption that the
wafer is so thin as to make border effects negligible, as
said above.) 2) On the part of the boundary belonging
to some port, either E, or 0E,/d% is assigned, depending
on whether an admittance or an impedance point of
view is adopted.

The component E, of the electromagnetic field at
port £ can be developed as a series of orthogonal
functions (the so-called microstrip modes), for instance,
as a cosine Fourier series:

st _ YISk
Es(Sk) = Fr,o -+ Z \/ZEk,r cos

r=1 k

)

where s; is a running coordinate on port k& going from 0
to I (kth port width). The Fourier series expansion of
the assumed field over the kth port is equivalent to a
modal expansion in terms of the modes of a parallel-
plate strip line connected to the port.

The next step is to define the voltage and current
associated with each port and each mode [which is
selected by index 7 in (3) ].

The voltage at port k£ for a given value of r (width
mode or microstrip mode) is defined as

Vk,r = Ek,rd (4)

where d is the thickness of the dielectric (intermediate)
layer. In a similar way one can develop 9FE,/0n at
port k:

oE,(s i _
(k) = Hk,o+ Z '\/ZH]‘;,TCOS
on 1 I

YISy

: ©)
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The current at port k for a given value of # is defined as
ch .rlln

Su

Zk,,« = (6)
These definitions (as well as the boundary conditions)
are suggested by the following energy considerations.

1) There is no power entering the system from the
part of the boundary not belonging to the ports.

2) The sum of the products VI* over all width modes
at port k will give the power entering the port.

Equation (1), with nonhomogeneous boundary condi-
tions, can be solved by a development in series of open-
circuit eigenfunctions defined by

V2¢n1n2 + )\n1n22¢n1n2 = 0 (7)

with the boundary condition d¢n,»,/d7 =0 on the whole
border of the structure (A...,% is the eigenvalue associ-
ated with the eigenfunction ¢..,). The eigenfunctions
are normalized in such a way that [s¢..,2dS =S, where
S is the area of the cross section of the structure.

The knowledge of the whole set of eigenfunctions
and related eigenvalues allows the explicit determina-
tion of the properties of the system. The assigned field
distribution over the ports can be decomposed in a
normal mode expansion in terms of the width modes,
each of which can be considered separately.

Straightforward calculations [6], [7] give the ele-
ments of the Z matrix of the network driven by width
mode 7;(7;) at port k(k):

ol sud
thrhrk = Z ﬁh,n K ,'r;,ﬂk,n IR 7y —— (8)
ny=0,n9==0 i e (s2%u + Apyn,>S
where
€7y Ln TrETSh
Bh,nl,nz,rk = Dnin, COS dsy (9)
"y 0 A
and
{1, if 7, =0
&y = .
2, if 7, % 0.

Zw™ is the ratio of the voltage of mode 7, at port %
to the current of mode 7, at port £ when all other cur-
rents are zero.

The existence of an impedance matrix is due to
linearity. Equation (8) means that the voltage mode
7y at port & can be obtained as a linear combination of
all the current modes at the ports. In a similar way one
can obtain the Y matrix elements through the short-
circuit eigenfunctions [6], [7].

THE Z1em MATRIX

In the previous procedure we have assumed an as-
signed distribution of electromagnetic field at the ports.
In order to apply the procedure to real cases, one has
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to specify by which means such distributions are ob-
tainable. Here we assume that the physical connections
between each of the portions of the boundary called
ports and the external circuit are uniform strip lines.
A general procedure can be developed to obtain the
impedance matrix of the N port from the planar eigen-
functions of the structure with the electromagnetic
field assigned on the uniform strip lines very far from
the ports.

The method is based on the analysis of the transitions
among modes in the structure and modes in the lines.
We shall describe the procedure for a two-port: the
generalization to an IV port is straightforward.

We shall define some vector quantities that will be
very useful in describing the problem in compact form.
We shall indicate I; and I the vectors of the current at
port 1 and at port 2: the rth component of these vectors
is defined as

L] =1, [RO] = 1o (10)
The total vector current will be defined as
=", (11)
I,

In the same way we shall define the total vector voltage
as

V= !Vl 12
=l (12)

where
[Vi()] = Vi [Vo()] = V.o (13)

From the total vector voltage V one can obtain the
fundamental vector voltage E defined as

E =

v
(1)

vy

where

[Vi'(N] = [Vi()be] and  [V'(r)] = [Va(r)én]

and §,, is a Kronecker operator. The fundamental
vector voltage components are all zero except for two,
which are the voltages at port 1 and port 2 for the
width mode» =0.

It is worth noting that the vectors I, I, V3, and V,
have an infinite number of components, that is, 7 goes
from zero to infinity. The use of infinite vectors is
quite usual in microwave literature [8]-[10] to allow
a compact analysis of the effects of transitions in wave-
guides and cavities. Now the total voltage vector can

be obtained from the total current vector by:
V= 2zI (15)

where Z is the total impedance matrix, that is, a
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Fig. 2. Rectangular two-port connected to parallel-
plate uniform lines.
square matrix defined by
Zy Zy
= (16)
Zy Lo

where Zyn, Ziw, Zu, and Z, are square matrices, whose
(ra 72) entry is given by

[th(f’h, 71«:)] = L, (17)

Equation (15) is derived from the fact that the rth
mode voltage at port 1 (or at port 2) is given by a linear
combination of all current modes at port 1 and at port 2.

One can obtain from (8) that

thrhrk —_ Zkhrkrh

(18)

that is, the Z matrix is symmetric.

Let us suppose now that the two-port is connected to
the environment through two uniform lines. These
lines are assumed to have the same physical nature as
the given two-port, i.e., they are composed of uniform
strips of material of permeability u, dielectric constant
€, thickness d, metallized on the upper and lower faces.
Fig. 2 shows a rectangular two-port in such a connec-
tion.

The presence of the discontinuities at the ports
causes the existence of higher modes both in the uni-
form lines and in the two-port cavity. These higher
modes cannot propagate in the terminations for a wide
range of frequency, as when the strip-line widths are
very small compared to the wavelength; nevertheless,
they are present in the two-port structure.

Then if the length of the uniform lines is sufficiently
great as to avoid the coupling of higher modes with the
generators or the loads at the terminations, one ob-
tains

V=—-ZJI+E (19)

where Z; is the higher modes characteristic impedance
matrix composed of four square matrices, two of which
are the zero matrix:

Zy, O
0 Z,

Zu=

. (20)



300

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 1972

i)
o]

Z

TEM

j z°""
T

Z TEM

Fig. 3.

The matrices Zo1 and Zy, are diagonal matrices de-
fined by

[ZO,I(ry rl)] = ZU.IJ‘(]- - 6?‘0)6"’ (21,)
[Zo,z(f’, 7")] = Zo,2.0(1 — 8:0)0r (21"
where (=0, 1,2, -+ +)
sud rm\2 12
Zoar = —[sﬁeu + (—) ] 22
A h
sud re\2-1/2
ARTES ”_|:52€M + (—-) :I (227)
Iy Iy

and }, and I, are the widths of ports 1 and 2, respectively.

From (15) and (19) one obtains
1= (Z+ Z)'E. (23)

If only the fundamental modes are considered in the
total vector current, one obtains

Ii0
Iz

Vio
. (24)

= ZTEM—I‘
2,0

Then Zyru is defined as the open-circuit impedance
matrix of the two-port structure, obtained through
elimination of the effects of the attached uniform lines
in the impedance matrix at the ports.

From a network point of view the structure of Fig.
2 has the equivalent circuit of Fig. 3.

The Zrgy matrix is the two-port characterization of
the structure loaded by the characteristic impedances
of the higher modes and driven by a TEM field distri-
bution at the terminals of the uniform lines.

The impedance matrix at the terminals 44’ and BB’
as shown in Fig. 3 can be obtained by the usual proce-
dures of network theory.

The evaluation of Zreu requires the inversion of an
infinite square matrix. The whole computation can be
greatly simplified if one remembers that the definition
of Zrgm requires that the uniform lines connected to the
ports have very small widths compared with the wave-
length. Then it is known that only a few higher modes
must be considered [10].

Equivalent circuit for the Zrgpy matrix.

Finally, it is worth noting that the smaller the strip-
line widths are, the greater the frequency of operation

of the system can be without propagation of higher
modes in the lines.

THE RECTANGULAR STRUCTURE

In this section and in the next one we present some
results obtained for a structure which is studied rather
simply because the open-circuit eigenfunctions are
very easily calculated. It is a rectangular structure
(Fig. 4) endowed on opposite sides with two ports,
whose position and width are variable.

Such a structure is interesting because it is the sim-
plest form of the common uniform line. Still, it shows
some unusual features, such as the existence of the
transmission zeros, which put into evidence interesting
match properties at several frequencies. Hence a full
analytical and numerical investigation seems to be
worthwhile, not only as an example of a layered struc-
ture, but because of possible practical applications.

Straightforward calculations give the Z matrix ele-
ments

uw d 2sud
Zy™ = /‘/— — coth Yl0g80: + a
€ a a

nom 2
coth l/‘/'y2 =+ (——)
a

. i Cl(ﬂz, f)CIO’LZ’: S)

— (25
v’ #nam\?
1/'\/2 -+ ( >
a
v d 2sud
ZZ?,m = /‘/ﬁ - COth 7160160& + i
€ a a
Nom 2
. cothlg/ 4* + (~——>
a
L3 Calne, N, ) (25")

ng=1
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Fig. 4. Rectangular structure.
ud 2sud
Z12rs = /‘/‘“ — csch ’Yl(sora()s + #
€ a a
#om\ 2
csch I/ v* + (—«)
d a
- 2 Ci(ns, 1)Calns, 5) e (25")
na=1 nam\?
/e )
a
where (k=1, 2)
T’ TV
(—1)" sin e sin i
HNaey a a
Crlna, 1) = - (26)

maly <112>2 ( r >2
a lL

From expression (25) (the elements of the Z matrix),
one can derive the properties of the rectangular struc-
ture, in particular the Zrgm matrix.

An interesting feature of the rectangular structure is
the existence of transmission zeros [11]-[14]. These
are caused by the propagation of higher modes inside
the rectangular structure. At the same time no higher
mode must propagate in the strip-line terminations.
Thus the cavity width must be much larger than the
maximum strip-line width. This simplifies the evalua-
tion of Zrgm. In a first approximation, for very small
widths of the ports, one obtains

27

Zrmat ni 2 Zn i

This approximation has been used in previous
papers [11], [12] to analyze the properties of the struc-
ture and to obtain equivalent circuits.

It can be shown that the ordinary stub structures are
particular cases of the system under consideration.

Straightforward calculations show that if 1) the
widths of the two uniform lines are very small compared
to the cavity width, and 2) the cavity length is very
small compared to the wavelength, then the structure
of Fig. 4 has the equivalent circuit of Fig. 5 for all the
frequencies of practical interest. ‘

- The equivalent circuit of Fig. 5 is a two-port network
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Fig. 5. Generalized stub structure.

composed of three uniform lines, two of which are con-
nected as shunt impedances at the ports. Every line
has a propagation constant ¥ and a characteristic
impedance +/u/e(d/l); the length of various lines are
shown in Fig. 5 when y,>y,, where

y2/ 4+ yzlf

~ yll + yl,/
2 72 2

Y1

This result can be obtained from (25) or (1) directly,
noting that, if the length ! is very small, 92E,/dx? can
be completely omitted. Thus the usual equation of
uniform lines is obtained. With straightforward im-
position of boundary conditions one obtains the equiv-
alent circuit of Fig. 5. i

Obviously, from this equivalent circuit one obtains
the usual stub structure if ports 1 and 2 are placed
symmetrically, particularly, if ¥, =y,=0, one realizes
that the whole structure is equivalent to an impedance
given by the well-known expression '

w d
Zstup = /‘/"‘ l_ coth (’Ya).
€

Then comparison with ordinary stub structures has
shown that these are a particular case of the system
under consideration.

Equation (27) is correct only in a first approximation.
As a second approximation one can consider four ele-
ments in every matrix instead of one; that is, in ex-
pression (23) one considers Zu!, Zp!®, and Zp!!
beyond Z;;%. This approximation is significant if:
1) only a few width modes inside the cavity can propa-
gate; there exists #,* such that w<ns*r/a+/eu for all
the frequencies of practical interest; and 2) the widths
of the ports are very small compared to the cavity
width, in such a way that max (L, L) <<K(a/n.*). .

(28)
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Fig. 6. Comparison with ordinary stub structure.
4 £
— o
Y
i i )
£
a a 1
aje
k h 4
1 K 1
(a) ()
Fig. 7. (a) Stub structure. (b) Modified stub structure.

If these conditions are satisfied, higher modes cannot
propagate in the strip-line terminations. The analysis
of the transition between cavity and lines can be
carried on considering only the fundamental mode and
the first higher modes in the terminations. This is quite
reasonable because the limitation over the number of
cavity-width modes allows a description of the field
distribution at the ports through few terms of a cosine
Fourier series.

NUMERICAL ANALYSIS

On the background of the theory expressed above,
we have prepared a Fortran IV program through which
a complete analysis of the structures considered in the
previous section can be carried on. It gives both the
impedance and scattering matrices (the latter nor-
malized with respect to the characteristic impedances
of the lines connected to the ports) once the physical
and geometric parameters are specified together with
the number of attenuated modes at the ports that one
wants to consider.

With the use of this program, a systematic investiga-
tion has been made. We present here a brief list of
results. The TEM impedance matrix elements are cal-
culated taking into account only the first attenuated
port modes.

' (thick line) for the structure of Fig. 7(a),
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Fig. 8. X1 of nonconventional stub structure.
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Fig. 9. First transmission zero of the structure of Fig. 7(a).
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Fig. 10. First transmission zero of the structure of Fig. 7(b).

1) In Fig. 6 one can find the reactance X1 tEm
where
h=1=a/10. This reactance is normalized to /u/e(d/a)
and f, is the normalized frequency, related to the fre-
quency f by f.=Ff+/eua. In Fig. 6 one can also find the
reactance X1 (thin line) of the same two-port, consid-
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ered as an ordinary stub of length a. X1,%° coincides
with X1 rry practically in the scale of the figure.

2) Fig. 8 shows X3 reum (solid line) and X1,%° (dashed
line) for the structure of Fig. 7(a), where h=I=a/2.
Note that, owing to the considerable widths of the ports,
this structure by no means can be assimilated to an or-
dinary stub line, as is apparent from the plots.

3) Fig. 9 shows the normalized frequency f, of the
lowest transmission zero of the two-port of Fig. 7(a), for
various values of #/a, as a function of //a and calculated
from the Zrgy matrix (solid line) and from the Z%
matrix (dashed line). It is worth noting in Fig. 9 that for
small values of h/a the transmission zeros calculated
with both methods are very close and they are signifi-
cantly different from the frequency of the lowest zero
for a simple stub of length a, which is f,=0.25.

4) Fig. 10 shows the normalized frequency of the low-
est transmission zero, as in 3) but refers to the structure
of Fig. 7(b).

CONCLUSIONS

We have shown that by a relatively simple network
one can construct very complicated transfer functions.
The most interesting feature seems to be the existence
of transmission zeros. The results obtained are signifi-
cant, and they encouraged the authors to develop this
investigation in two directions.

One is oriented toward low-frequency applications.
The structure acts as bidimensional RC line. The por-
tions of the boundary of the upper and lower layers
which belong to the ports are covered by perfectly con-
ductive material. The extension of the results obtained
in the lossless case is straightforward.

. Another direction is oriented toward high-frequency
applications. It has been shown that notch filters of a
nonconventional type can be obtained by the use of the
structure examined. The effect of the lines connected to
the structure on the positions of the first transmission
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zero has been analyzed for various geometrical dimen-
sions to obtain a notch filter. The results have been
plotted with two different degrees of approximation in
order to make a comparison with an ordinary stub struc-
ture.
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