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Nonconventional Transmission Zeros in

Distributed Rectangular Structures

BRUNO BIANCO AND SANDRO RIDJ3LLA

Abstracf—A lossless distributed rectangular structure, composed

of a dielectric layer interposed between two perfectly conductive

metallic layers, is considered. This structure is endowed with two

ports, whose positions and widths are variable and is connected to

the environment through uniform transmission lines. A procedure is
exposed to obtain the impedance matrix at the terminals of the trans-
mission lines. The existence of transmission zeros and of filtering
properties is demonstrated.

INTRODUCTION

T

APERED transmission lines have been investi-

gated both in the lossless and in the RC case by

several authors with the use of classical non-

uniform line theory [1 ]– [4 ].

A more general class of distributed networks has been

investigated in recent papers [5 ]– [7 ]. These papers are

concerned with a three-layer structure in which each

layer has uniform thickness and is composed of linear,

passive, homogeneous, time-invariant material. Each

layer is physically characterized by its magnetic perme-

ability, dielectric constant and electric conductivity.

The three layers overlap exactly and are laterally

limited by a cylindrical surface of arbitrary shape,

perpendicular to the layers. This system interacts with

the outside world through lV ports placed in the lateral

boundary of the wafer. YVe are interested in the terminal

behavior of the system at those l!l ports. Thus the

system studied in [5 ]– [7 ] is a generalization of strip

lines, nonuniform lines, and various other devices which

have been examined in the literature in a rather par-

ticular way.

ANALYSIS OF THE STRUCTURE

The analysis of the three-layer wafer described above ~

stems from electromagnetic theory [.s ]– [7 ]. The meth-

ods of analysis are based on basic techniques, e.g.,

normal mode methods of field theory which are well

known in microwave literature. These methods have

been used to investigate particular properties of the

three-layer structure. The electromagnetic field inside

the structure is represented by expansion in terms of

vector eigenfunctions of Maxwell’s equations, with

properly chosen boundary conditions.
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Fig. 1. IV-port (here N= 3) composed of a dielectric
layer interposed between two metallic layers.

Such eigenfunctions are broadly divided in two

classes: 1) planar ones, only depending on the x and y

coordinates, which are parallel to the layers; and 2)

depth ones, only depending on the z coordinate (per-

pendicular to the layers).

It must be remarked that the propagation direction,

that is, the direction in which the power ilows, lies in

the x–y plane; it seems inappropriate to use transverse

and longitudinal eigenfunctions instead of planar and

depth eigenfunctions, respectively.

The analysis of the terminal behavior of the structure

must start from the analysis of the depth properties.

In the above quoted papers one can find the general

development of this problem.

In this paper, however, we shall consider a three-

Iayer structure (Fig. 1) where the upper and lower layers

are perfectly conductive materials and the intermediate

one is a lossless dielectric. In technical applications

such a structure will be fairly realized by al wafer com-

posed of a dielectric Iossless layer interposed between

two metallic sheets, obtained, for example, by deposi-

tion.

Because of the assumption that the external layers are

perfectly conductive, the electromagnetic field in the

structure is confined in the intermediate layer. We shall

assume that the wafer thickness is so small in com-

parison with its transverse dimension as to make the

effect of field fringing along the boundary practically

negligible. Moreover, we shall assume that on Iy the

fundamental depth mode [6], [7] is excited; it is char-

acterized by having the electric field parallel to the z

axis, and the magnetic field parallel to the x–y plane.

These assumptions are quite reasonable for many well-

known physical structures, such as lossless uniform and

nonuniform lines, microstrip filters, cavities, etc. The
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terminal behavior

tained by solving

[5]-[7]:

of the layered structure can be ob-

the following differential equation

(1)V2E,(X, y) – I’2E*(Z, y) = o

where

72 Laplace operator in thex–y plane;

138(x, y) electric field (parallel to thez axis);

‘Y propagation constant, given by

72 = @ (2)

where s=a+ju is the complex frequency and c(~) is the

dielectric (magnetic) constant of the intermediate

layer.

The boundary conditions for (1) are of the following

mixed type. 1) On the part of the boundary not belong-

ing to the ports,

(3E, ‘
—— =0
an

where n is the inner normal to the boundary, (This con-

dition, which assumes that the boundary of the wafer,

in the portions not occupied by the ports, acts as a

magnetic wall, derives from that assumption that the

wafer is so thin as to make border effects negligible, as

said above.) 2) On the part of the boundary belonging

to some port, either E, or 8E./&z is assigned, depending

on whether an admittance or an impedance point of

view is adopted.

The component E. of the electromagnetic field at

port k can be developed as a series of orthogonal

functions (the so-called microstrip modes), for instance,

as a cosine Fourier series:

?’Tsk
E.(Sk) = Ek,o i- ~ d%%,, COS—

lk
(3)

T=1

where sk is a running coordinate on port k going from O

to zk (kth port width). The Fourier series expansion of

the assumed field over the kth port is equivalent to a

modal expansion in terms of the modes of a parallel-

plate strip line connected to the port.

The next step is to define the voltage and current

associated with each port and each mode [which is

selected by index r in (3)].

The voltage at port k for a given value of r (z&W

mode or microstrip mode) is defined as

vk,~ = Ek,rd (4)

where d is the thickness of the dielectric (intermediate)

layer. In a similar way one can develop i3E./tln at

port k:

The current at port k for a given value of Y is defined as

(6)

These definitions (as well as the boundary conditions)

are suggested by the following energy considerations.

1) There is no power entering the system from the

part of the boundary not belonging to the ports.

2) The sum of the products VI* over all width modes

at port k will give the power entering the port.

Equation (l), with nonhomogeneous boundary condi-

tions, can be solved by a development in series of open-

circuit eigenfunctions defined by

with the boundary condition @5.1.z/ihz = 0 on the whole

border of the structure &,~,2 is the eigenvalue associ-

ated with the eigenfunction o~,~,). The eigenfunctions

are normalized in such a way that Js&~Z2dS = S, where

S is the area of the cross section of the structure.

The knowledge of the whole set of eigenfunctions

and related eigenvalues allows the explicit determina-

tion of the properties of the system. The assigned field

distribution over the ports can be decomposed in a

normal mode expansion in terms of the width modes,

each of which can be considered separately.

Straightforward calculations [6], [7] give the ele-

ments of the Z matrix of the network driven by width

mode r~(?’k) at port h(k):

where

@’ksth ~k~sh
ifh,.,,n,,n = ~ — dsh‘n’n’CosJ,

(9)
o

and

{

1, ifr~=O
erk =

2, if rk # ().

Zhk’h’k is the ratio of the voltage of mode ?’h at port h

to the current of mode t’k at port k when all other cur-

rents are zero,

The existence of an impedance matrix is due to

linearity. Equation (8) means that the voltage mode

?’h at port h can be obtained as a linear combination of

all the current modes at the ports. In a similar way one

can obtain the 1’ matrix elements through the short-

circuit eigenfunctions [6], [7].

THE ZTEM MATRIX

In the previous procedure we have assumed an as-

signed distribution of electromagnetic field at the ports.

In order to apply the procedure to real cases, one has
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to specify by which means such distributions are ob-

tainable. Here we assume that the physical connections

between each of the portions of the boundary called

ports and the external circuit are uniform strip lines.

A general procedure can be developed to obtain the

impedance matrix of the N port from the planar eigen-

functions of the structure with the electromagnetic

field assigned on the uniform strip lines very far from

the ports.

The method is based on the analysis of the transitions

among modes in the structure and modes in the lines.

We shall describe the procedure for a two-port: the

generalization to an N port is straightforward.

We shall define some vector quantities that will be

very useful in describing the problem in compact form.

We shall indicate 11 and 12 the vectors of the current at

port 1 and at port 2: the ith component of these vectors

is defined as

[L(r)]= 1,,, [1+)] = ILI,r. (lo)

The total vector current will be defined as

(11)

In the same way we shall define the total vector voltage

as

where

[VI(7):

VI
v=

v,

= VI,, [V,(T)] = ‘v,,,.

(12)

(13)

From the total vector voltage V one can obtain the

fundamental vector voltage E defined as

V1’
E=

v,’

where

(14)

and 8,0 is a Kronecker operator. The fundamental

vector voltage components are all zero except for two,

which are the voltages at port 1 and port 2 for the

width mode Y = O.

It is worth noting that the vectors 11, 12, VI, and Vz

have an infinite number of components, that is, r goes

from zero to infinity. The use of infinite vectors is

quite usual in microwave literature [8 ]–[10] to allow

a compact analysis of the effects of transitions in wave-

guides and cavities. Now the total voltage vector can

be obtained from the total current vector by:

V=ZI (15)

Fig. 2. Rectangular two-port connected to parallel-
plate uniform lines.

square matrix defined by

where

(rh, r’k)

(16)

211, Zlz, Zzl, and ZZZ are square matrices, whose

entry is given by

[2,,(7,, r-k)]= z,k’~’~. (17)

Equation (15) is derived from the fact that the rth

mode voltage at port 1 (or at port 2) is given by a linear

combination of all current modes at port 1 and at port 2.

One can obtain from (8) that

Zhk,h?.k = Zkh’k’i’ (18)

that is, the Z matrix is symmetric.

Let us suppose now that the two-port is connected to

the environment through two uniform lines. These

lines are assumed to have the same physical nature as

the given two-port, i.e., they are composed of uniform

strips of material of permeability p, dielectric constant

e, thickness d, metallized on the upper and lower faces.

Fig, 2 shows a rectangular two-port in such a connec-

tion.

The presence of the discontinuities at the ports

causes the existence of higher modes both in the uni-

form lines and in the two-port cavity. These higher

modes cannot propagate in the terminations for a wide

range of frequency, as when the strip-line widths are

very small compared to the wavelength; nevertheless,

they are present in the two-port structure.

Then if the length of the uniform lines, is sufficiently

great as to avoid the coupling of higher modes with the

generators or the loads at the terminations, one ob-

tains

V=–2V+E (19)

where 20 is the higher modes characteristic impedance

matrix composed of four square matrices, two of which

are the zero matrix:

20,1 0
20 =

o 20,2 “
(20)

where Z is the total impedance matrix, that is, a



300 ISEETRANSACTIONSON MICROWAVETHRORYAND TI?CHNIQUSS,MAY 1972

AA’

Fig. 3. Equivalent circuit for the ZTEM matrix.

The matrices ZO,I and Z0,2 are diagonal matrices de-

fined by

[20,,(?’, Y’)] = Z,,,,,(1 - &o)& (21’)

[20,, (7, Y’)] = 2,,2,,(1 - 8,0)6,!. (21”)

where (Y=O, 1, 2, . . 0 )

‘o’=:[s’e~+(:)l”z‘22’)

‘o’=%l’’~+(;)’l”z‘22”)
and 11and 12.are the widths of ports 1 and 2, respectively.

From (15) and (19) one obtains

I = (z+ ZO)-’E. (23)

If only the fundamental modes are considered in the

total vector current, one obtains

11,0 VI,,
= ZTEAI–l

12,0 V,,o “
(24)

Then ZTEM is defined as the open-circuit impedance

m~atrix of the two-port structure, obtained through

elimination of the effects of the attached uniform lines

in the impedance matrix at the ports.

From a network point of view the structure of Fig.

2 has the equivalent circuit of Fig. 3.

The ZTEM matrix is the two-port characterization of

the structure loaded by the characteristic impedances

of the higher modes and driven by a TEM field distri-

bution at the terminals of the uniform lines.

The impedance matrix at the terminals AA’ and BB’

as shown in Fig. 3 can be obtained by the usual proce-

dures of network theory.

The evaluation of .ZTEM requires the inversion of an

infinite square matrix. The whole computation can be

greatly simplified if one remembers that the definition

of ZTEM requires that the uniform lines connected to the

ports have very small widths compared with the wave-

length. Then it is known that only a few higher modes

must be considered [10].

Finally, it is worth noting that the smaller the strip-

Iine widths are, the greater the frequency of operation

of the system can be without propagation of higher

modes in the lines.

THE RECTANGULAR STRUCTURE

In this section and in the next one we present some

results obtained for a structure which is studied rather

simply because the open-circuit eigenfunctions are

very easily calculated. It is a rectangular structure

(Fig. 4) endowed on opposite sides with two ports,

whose position and width are variable.

Such a structure is interesting because it is the sim-

plest form of the common uniform line. Still, it shows

some unusual features, such as the existence of the

transmission zeros, which put into evidence interesting

match properties at several frequencies. Hence a full

analytical and numerical investigation seems to be

worthwhile, not only as an example of a layered struc-

ture, but because of possible practical applications.

Straightforward calculations give the Z matrix ele-

ments

d

;d 2spd
211”’ = – – coth @or60s + —

ea a

‘d~d 2spd
Z22.S = – – coth -Y160,60. + —

ea a

(25’)

(25”)
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ah

Fig. 4, Rectangular structure.

C,(n,, Y)C,(?22,s)

where (k =1, 2)

(25’”)

(26)

From expression (25) (the elements of the Z matrix),

one can derive the properties of the rectangular struc-

ture, in particular the ZTEM matrix.

An interesting feature of the rectangular structure is

the existence of transmission zeros [11 ]– [14 ]. These

are caused by the propagation of higher modes inside

the rectangular structure. At the same time no higher

mode must propagate in the strip-line terminations.

Thus the cavity width must be much larger than the

maximum strip-line width. This simplifies the evalua-

tion of ZTEM. In a first approximation, for very small

widths of the ports, one obtains

ZTEM h,k = Zh,koo. (27)

This approximation has been used in previous

papers [11 ], [12] to analyze the properties of the struc-

ture and to obtain equivalent circuits.

It can be shown that the ordinary stub structures are

particular cases of the system under consideration.

Straightforward calculations show that if 1) the

widths of the two uniform lines are very small compared

to the cavity width, and 2) the cavity length is very

small compared to the wavelength, then the structure

of Fig. 4 has the equivalent circuit of Fig. 5 for all the

frequencies of practical interest.

~The equivalent circuit of Fig. 5 is a two-port network

-b-

Fig. 5. Generalized stub structure.
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d

composed of three uniform lines, two of which are con-

nected as shunt impedances at the ports. Every line

has a propagation constant T and a characteristic

impedance <#/e(d/l); the length of various lines are

shovm in Fig. 5 when yi > YI, where

yl’ + yl” y2’ i- y?”
‘y I = ——

2
y2 . ——— .

2

This result can be obtained from (25) or (1) directly,

noting that, if the length 1 is very small, d2E,,/dx2 can

be completely omitted. Thus the usual equation of

uniform lines is obtained. With straightforward im-

position of boundary conditions one obtains the equiv-

alent circuit of Fig. 5.

Obviously, from this equivalent circuit one obtains

the usual stub structure if ports 1 ancl 2 are placed

symmetrically, particularly, if yl = y2 = O, one realizes

that the whole structure is equivalent to an impedance

given by the well-known expression

‘v’;d
-&ub = ‘ – coth (-ya).

ei

Then comparison with ordinary stub

shown that these are a particular case

under consideration.

(28)

structures has

of the system

Equation (27) is correct only in a first approximation.

As a second approximation one can consider four ele-

ments in every matrix instead of one; that is, in ex-

pression (23) one considers rzhkO1j .zhklO, and zhkll

beyond Zhkoo. This approximation is significant if:

1) only a few width modes inside the cavity can propa-

gate; there exists n2* such that a<<nz*m/a& for all

the frequencies of practical interest; andl 2) the widths

of the ports are very small compared to the cavity

width, in such a way that max (11, lz)<<(a/nz*). ,
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Fig. 6. Comparison with ordinary stub structure.

, t+ t
~+

(a)

T

cd

!1R
(b)

Fig. 7. (a) Stub structure. (b) Modified stub structure.

If these conditions are satisfied, higher modes cannot

propagate in the strip-line terminations. The analysis

of the transition between cavity and lines can be

carried on considering only the fundamental mode and

the first higher modes in the terminations, This is quite

reasonable because the limitation over the number of

cavity-width modes allows a description of the field

distribution at the ports through few terms of a cosine

Fourier series.

NUMERICAL ANALYSIS

On the background of the theory expressed above,

we have prepared a Fortran IV program through which

a complete analysis of the structures considered in the

previous section can be carried on. It gives both the

impedance and scattering matrices (the latter nor-

malized with respect to the characteristic impedances

of the lines connected to the ports) once the physical

and geometric parameters are specified together with

the number of attenuated modes at the ports that one

wants to consider.

With the use of this program, a systematic investiga-

tion has been made. We present here a brief list of

results. The TEM impedance matrix elements are cal-

culated taking into account only the first attenuated

nort modes..

6

4

2

0

-2

-4

-6

040

03~

o 3C

0.25

/

02 04 /’” 0,6 0,8 f,
.

co

Fig. 8. X,2 of nonconventional stub structure.

f.

t’la

02 0.4 06”

Fig. 9. First transmission zero of the structure of Fig. 7(a).

f.

fr/a= 0.1

.--—. ---------------- -----
055-

R/a. 005
-------—--—-—.———.—- ----

0.2 0.4 0.6

Fig. 10. First transmission zero of the structure of Fig. 7(b).

1) In Fig. 6 one can find the reactance X12 TEM
(thick line) for the structure of Fig. 7(a), where

k =1 = a/10. This reactance is normalized to ~P/e(d/a)

and ~n is the normalized frequency, related to the fre-

quency j by jfi =f~e~a. In Fig. 6 one can also find the

reactance X12 (thin line) of the same two-port, consid-
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ered as an ordinary stub of length a. XIZoo coincides

with X12 TEMpractically in the scale of the figure.

2) Fig. 8 shows Xl, ~~~[ (solid line) and XIZoo (dashed

line) for the structure of Fig. 7(a), where h = 1=a/2,

Note that, owing to the considerable widths of the ports,

this structure by no means can be assimilated to an or-

dinary stub line, as is apparent from the plots.

3) Fig. 9 shows the normalized frequency ~0 of the

lowest transmission zero of the two-port of Fig. 7(a), for

various values of h/a, as a function of l/a and calculated

from the ZT~kl matrix (solid line) and from the Zoo

matrix (dashed line). It is worth noting in Fig. 9 that for

small values of is/a the transmission zeros calculated

with both methods are very close and they are signifi-

cantly different from the frequency of the lowest zero

for a simple stub of length a, which is ~. = 0.25.

4) Fig. 10 shows the normalized frequency of the low-

est transmission zero, as in 3) but refers to the structure

of Fig. 7(b).

C’ONCLCTSIONS

We have shown that by a relatively simple network

one can construct very complicated transfer functions.

The most interesting feature seems to be the existence

of transmission zeros, The results obtained are signifi-

cant, and they encouraged the authors to develop this

investigation in two directions.

One is oriented toward low-frequency applications.

The structure acts as bidimensional RC line. The por-

tions of the boundary of the upper and lower layers

which belong to the ports are covered by perfectly con-

ductive material. The extension of the results obtained

in the lossless case is straightforward.

Another direction is oriented toward high-frequency

applications. It has been shown that notch filters of a

nonconventional type can be obtained by the use of the

structure examined. The effect of the lines connected to

the structure on the positions of the first transmission

303

zero has been analyzed for various geometrical dimen-

sions to obtain a notch filter. The results have been

plotted with two different degrees of approximation in

order to make a “comparison with an ordinary stub struc-

ture.
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